Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Emerg Infect Dis ; 27(9): 2454-2458, 2021 09.
Article in English | MEDLINE | ID: covidwho-2269390

ABSTRACT

Not all persons recovering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection develop SARS-CoV-2-specific antibodies. We show that nonseroconversion is associated with younger age and higher reverse transcription PCR cycle threshold values and identify SARS-CoV-2 viral loads in the nasopharynx as a major correlate of the systemic antibody response.


Subject(s)
COVID-19 , Antibody Formation , COVID-19/immunology , COVID-19 Serological Testing , Humans , Nasopharynx , SARS-CoV-2 , Seroconversion
2.
Blood Adv ; 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2259452

ABSTRACT

Several independent lines of evidence suggest that megakaryocytes are dysfunctional in severe COVID-19. Herein, we characterized peripheral circulating megakaryocytes in a large cohort of COVID-19 inpatients and correlated subpopulation frequencies with clinical outcomes. Using peripheral blood, we show that megakaryocytes are increased in the systemic circulation in COVID-19, and we identify and validate S100A8/A9 as a defining marker of megakaryocyte dysfunction. We further reveal a subpopulation of S100A8/A9+ megakaryocytes that contain SARS-CoV-2 protein and RNA. Using flow cytometry of peripheral blood and in vitro studies on SARS-CoV-2 infected primary human megakaryocytes, we demonstrate that megakaryocytes can transfer viral antigens to emerging platelets. Mechanistically, we show that SARS-CoV-2 containing megakaryocytes are NFκB-activated, via p65 and p52, express NFκB-mediated cytokines, IL-6 and IL-1ß, and display high surface expression of TLR2 and TLR4, canonical drivers of NFκB. In a cohort of 218 COVID-19 inpatients, we correlate frequencies of megakaryocyte subpopulations with clinical outcomes and show that SARS-CoV-2 containing megakaryocytes are a strong risk factor for mortality and multi-organ injury, including respiratory failure, mechanical ventilation, acute kidney injury, thrombotic events, and ICU admission. Further, we show that SARS-CoV-2+ megakaryocytes are present in lung and brain autopsy tissues from deceased COVID-19 donors. This study offers the first evidence implicating SARS-CoV-2+ peripheral megakaryocytes in severe disease and suggests that circulating megakaryocytes warrant investigation in inflammatory disorders beyond COVID-19.

3.
Protein Eng Des Sel ; 352022 02 17.
Article in English | MEDLINE | ID: covidwho-1692166

ABSTRACT

Quantification of the anti-SARS-CoV-2 antibody response has proven to be a prominent diagnostic tool during the COVID-19 pandemic. Antibody measurements have aided in the determination of humoral protection following infection or vaccination and will likely be essential for predicting the prevalence of population level immunity over the next several years. Despite widespread use, current tests remain limited in part, because antibody capture is accomplished through the use of complete spike and nucleocapsid proteins that contain significant regions of overlap with common circulating coronaviruses. To address this limitation, a unique epitope display platform utilizing monovalent display and protease-driven capture of peptide epitopes was used to select high affinity peptides. A single round of selection using this strategy with COVID-19 positive patient plasma samples revealed surprising differences and specific patterns in the antigenicity of SARS-CoV-2 proteins, especially the spike protein. Putative epitopes were assayed for specificity with convalescent and control samples, and the individual binding kinetics of peptides were also determined. A subset of prioritized peptides was used to develop an antibody diagnostic assay that showed low cross reactivity while detecting 37% more positive antibody cases than a gold standard FDA EUA test. Finally, a subset of peptides were compared with serum neutralization activity to establish a 2 peptide assay that strongly correlates with neutralization. Together, these data demonstrate a novel phage display method that is capable of comprehensively and rapidly mapping patient viral antibody responses and selecting high affinity public epitopes for the diagnosis of humoral immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Humans , Pandemics , Peptides , Serologic Tests , Spike Glycoprotein, Coronavirus
4.
JCI Insight ; 6(15)2021 08 09.
Article in English | MEDLINE | ID: covidwho-1350084

ABSTRACT

A subset of COVID-19 patients exhibit post-acute sequelae of COVID-19 (PASC), but little is known about the immune signatures associated with these syndromes. We investigated longitudinal peripheral blood samples in 50 individuals with previously confirmed SARS-CoV-2 infection, including 20 who experienced prolonged duration of COVID-19 symptoms (lasting more than 30 days; median = 74 days) compared with 30 who had symptom resolution within 20 days. Individuals with prolonged symptom duration maintained antigen-specific T cell response magnitudes to SARS-CoV-2 spike protein in CD4+ and circulating T follicular helper cell populations during late convalescence, while those without persistent symptoms demonstrated an expected decline. The prolonged group also displayed increased IgG avidity to SARS-CoV-2 spike protein. Significant correlations between symptom duration and both SARS-CoV-2-specific T cells and antibodies were observed. Activation and exhaustion markers were evaluated in multiple immune cell types, revealing few phenotypic differences between prolonged and recovered groups, suggesting that prolonged symptom duration is not due to persistent systemic inflammation. These findings demonstrate that SARS-CoV-2-specific immune responses are maintained in patients suffering from prolonged post-COVID-19 symptom duration in contrast to those with resolved symptoms and may suggest the persistence of viral antigens as an underlying etiology.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/blood , Antigens, Viral/immunology , COVID-19/blood , Female , Humans , Immunity , Immunity, Cellular , Male , Middle Aged , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Young Adult
5.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: covidwho-1011051

ABSTRACT

SARS-CoV-2 causes a wide spectrum of clinical manifestations and significant mortality. Studies investigating underlying immune characteristics are needed to understand disease pathogenesis and inform vaccine design. In this study, we examined immune cell subsets in hospitalized and nonhospitalized individuals. In hospitalized patients, many adaptive and innate immune cells were decreased in frequency compared with those of healthy and convalescent individuals, with the exception of an increase in B lymphocytes. Our findings show increased frequencies of T cell activation markers (CD69, OX40, HLA-DR, and CD154) in hospitalized patients, with other T cell activation/exhaustion markers (PD-L1 and TIGIT) remaining elevated in hospitalized and nonhospitalized individuals. B cells had a similar pattern of activation/exhaustion, with increased frequency of CD69 and CD95 during hospitalization followed by an increase in PD1 frequencies in nonhospitalized individuals. Interestingly, many of these changes were found to increase over time in nonhospitalized longitudinal samples, suggesting a prolonged period of immune dysregulation after SARS-CoV-2 infection. Changes in T cell activation/exhaustion in nonhospitalized patients were found to positively correlate with age. Severely infected individuals had increased expression of activation and exhaustion markers. These data suggest a prolonged period of immune dysregulation after SARS-CoV-2 infection, highlighting the need for additional studies investigating immune dysregulation in convalescent individuals.


Subject(s)
Antigens, Differentiation/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Lymphocyte Activation , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , B-Lymphocytes/pathology , COVID-19/pathology , Female , Humans , Male , Middle Aged , T-Lymphocytes/pathology
6.
Cell Rep Med ; 2(1): 100164, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-957488

ABSTRACT

Convalescent plasma (CP) is widely used to treat COVID-19, but without formal evidence of efficacy. Here, we report the beneficial effects of CP in a severely ill COVID-19 patient with prolonged pneumonia and advanced chronic lymphocytic leukemia (CLL), who was unable to generate an antiviral antibody response of her own. On day 33 after becoming symptomatic, the patient received CP containing high-titer (ID50 > 5,000) neutralizing antibodies (NAbs), defervesced, and improved clinically within 48 h and was discharged on day 37. Hence, when present in sufficient quantities, NAbs to SARS-CoV-2 have clinical benefit even if administered relatively late in the disease course. However, analysis of additional CP units revealed widely varying NAb titers, with many recipients exhibiting endogenous NAb responses far exceeding those of the administered units. To obtain the full therapeutic benefits of CP immunotherapy, it will thus be important to determine the neutralizing activity in both CP units and transfusion candidates.


Subject(s)
COVID-19/therapy , Aged , Antibodies, Neutralizing/administration & dosage , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Female , Humans , Immunization, Passive , Immunocompromised Host , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lung/diagnostic imaging , SARS-CoV-2/isolation & purification , Severity of Illness Index , Tomography, X-Ray Computed , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL